The N-acetyl-D-glucosaminylphosphatidylinositol De-N-acetylase of glycosylphosphatidylinositol biosynthesis is a zinc metalloenzyme.
نویسندگان
چکیده
The de-N-acetylation of N-acetyl-D-glucosaminylphosphatidylinositol (GlcNAc-PI) is the second step of mammalian and trypanosomal glycosylphosphatidylinositol biosynthesis. Glycosylphosphatidylinositol biosynthesis is essential for Trypanosoma brucei, the causative agent of African sleeping sickness, and GlcNAc-PI de-N-acetylase has previously been validated as a drug target. Inhibition of the trypanosome cell-free system and recombinant rat GlcNAc-PI de-N-acetylase by divalent metal cation chelators demonstrates that a tightly bound divalent metal cation is essential for activity. Reconstitution of metal-free GlcNAc-PI de-N-acetylase with divalent metal cations restores activity in the order Zn(2+) > Cu(2+) > Ni(2+) > Co(2+) > Mg(2+). Site-directed mutagenesis and homology modeling were used to identify active site residues and postulate a mechanism of action. The characterization of GlcNAc-PI de-N-acetylase as a zinc metalloenzyme will facilitate the rational design of anti-protozoan parasite drugs.
منابع مشابه
Synthesis of potential metal-binding group compounds to examine the zinc dependency of the GPI de-N-acetylase metalloenzyme in Trypanosoma brucei
A small zinc-binding group (ZBG) library of deoxy-2-C-branched-monosaccharides, for example, 1,5-anhydroglucitols, consisting of either monodentate ligand binding carboxylic acids or bidentate ligand binding hydroxamic acids, were prepared to assess the zinc affinity of the putative metalloenzyme 2-acetamido-2-deoxy-α-D-glucopyranosyl-(1→6)-phosphatidylinositol de-N-acetylase (EC 3.5.1.89) of g...
متن کاملN-acetyl-D-glucosaminylphosphatidylinositol de-N-acetylase from Entamoeba histolytica: metal alters catalytic rates but not substrate affinity.
PIG-L/GPI12 proteins are endoplasmic reticulum-resident membrane proteins involved in the second step of glycosylphosphatidylinositol anchor biosynthesis in eukaryotes. We show that the Entamoeba histolytica PIG-L protein is optimally active in the acidic pH range. The enzyme has an intrinsic low level of de-N-acetylase activity in the absence of metal and is significantly stimulated by divalen...
متن کاملInhibitors Incorporating Zinc-Binding Groups Target the GlcNAc-PI de-N-acetylase in Trypanosoma brucei, the Causative Agent of African Sleeping Sickness
Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently r...
متن کاملFragment screening reveals salicylic hydroxamic acid as an inhibitor of Trypanosoma brucei GPI GlcNAc-PI de-N-acetylase
The zinc-metalloenzyme GlcNAc-PI de-N-acetylase is essential for the biosynthesis of mature GPI anchors and has been genetically validated in the bloodstream form of Trypanosoma brucei, which causes African sleeping sickness. We screened a focused library of zinc-binding fragments and identified salicylic hydroxamic acid as a GlcNAc-PI de-N-acetylase inhibitor with high ligand efficiency. This ...
متن کاملSubstrate specificity of the N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase of glycosylphosphatidylinositol membrane anchor biosynthesis in African trypanosomes and human cells.
De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI) is the second step of glycosylphosphatidylinositol (GPI) membrane anchor biosynthesis in eukaryotes. This step is a prerequisite for the subsequent mannosylation of glucosaminyl-phosphatidylinositol (GlcN-PI) which leads to mature GPI membrane anchor precursors, which are transferred to certain proteins in the endoplasmic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 24 شماره
صفحات -
تاریخ انتشار 2005